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In recent years, central components of a new approach to linguistics, the
Minimalist Program, have come closer to physics. In this paper, an in-
teresting and productive isomorphism is established between minimalist
structure, algebraic structures, and many-body field theory opening new
avenues of inquiry on the dynamics underlying some central aspects of
linguistics. Features such as the unconstrained nature of recursive Merge,
the difference between pronounced and un-pronounced copies of elements
in a sentence, and the Fibonacci sequence in the syntactic derivation of
sentence structures, are shown to be accessible to representation in terms
of algebraic formalism.
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1. Introduction

The linguistic component of the present work is based on ‘generative grammar’
(GG; Chomsky 1955 et seq.). Our work deals with a relatively recent version of the
theory called the ‘Minimalist Program’ (MP; Chomsky 1995) and more particularly
with a very recent further development over the past few years that has brought
linguistics even closer to physics. We will not go into the debate pro and con GG,
embodied in a vast literature, out of which we indicate only some basic references.1

We show how some MP features are quite well suited to a mathematical rep-
resentation in terms of algebraic methods and tools. This goes beyond a pure, al-
though difficult, formal exercise, since it reveals the dynamics underlying aspects of
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the MP, which thus appears much richer than one might had suspected. Especially,
it uncovers many contact points of the linguistic structure with concrete properties
of nonlinear algebraic formalism commonly used in the description of physical sys-
tems. Although in our scheme linguistic structures are classical ones, we find that
an isomorphism can be established between the MP linguistic structure and many-
body field theory. In our opinion, a very rewarding result, no matter from which
standpoint one looks at, e.g. recognizing the deep dynamical processes underlying
the MP linguistic structures, or, vice versa, the linguistic content of the many-body
formalism. The plan of the paper is the following. In section 2, the most relevant
aspects of the MP are presented, including a re-analysis of X-bar trees, their self-
similarity properties, and their formalization under our schema. In section 3 and
its subsections, the interfaces, the manifold of concepts, and the copies of lexical
elements are discussed. Section 4 is devoted to final remarks where comments on
the entropy and the arrow of time are presented. Finally, in the Appendices A–C,
some details of the mathematical formalism are reported. Some properties of the
Fibonacci matrix are discussed in Appendix D.

2. The Relevant Components of the Minimalist Program

In the MP, accrued emphasis is put on “third factors of language design,”2 that
is, principles that are not specific to language, nor specific to biological systems;
basically, minimal (strictly local) search, minimal computation. In other words, the
physics and the mathematics of language. For a broader approach to language
and language evolution, see Perlovsky & Sakai (2014) and Perlovsky (2013) and
references therein. The most basic and simplest operation now is binary Merge.

The binary, unordered set created by Merge is then Merged with a third element
from the lexicon. This binary Merge is recursively repeated until the whole sen-
tence is terminated. The syntactic process, called ‘derivation’ is similar to a proof
ending when the sentence is terminated. In more complex sentences, with subor-
dinates, relatives, or embeddings, the process goes on until the derivation finally
stops (Chomsky 2001).

There are intermediate cyclic points of derivational (computational) closure,
called Phases.3 The syntactic derivation (the specific mental computation) stops
when a Phase is reached, and then a higher Phase is opened. The process continues
inside-out, building higher and higher components in the syntactic hierarchy. All
these recursive operations are binary and leave the items being merged unaltered.

There are few components overall: External Merge, Internal Merge, Agree, and
the Labeling Algorithm—to which we will return later. There is nothing else in
syntax; it is therefore called Narrow Syntax.

In the previous theory of Government and Binding (Chomsky 1981; Haegeman
1991), there where more components and entities. These are now, in Minimalism,
subsumed under more basic operations, under a constraint of strict locality. The
head gives the name to the constituent it generates (nouns to Noun Phrases, verbs

2 The other two factors are: genetic predispositions and peculiarities of the local language that
the child has to learn (Chomsky 2005).

3 For greater clarity, we will use upper case P for Phases in syntax and lower case p for phases
in physics.
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to Verb Phrases, and so on). More generally, we have an {H, XP} construction, a
Head and a Phrase. The X in XP is a generalization, meaning that it can be any one
of a great variety of phrasal categories.

What were previously (in the theory of Government and Binding) called ‘empty
categories’ (because they are not pronounced or written) are now simplified in
terms of copies. Copies come for free, so to speak, because they are elements al-
ready present in previous steps of the derivation, for instance, items extracted from
the lexicon.4 The replacement of empty categories with copies of lexical elements
(pronounced or un-pronounced—a distinction to which we return below) is a step
in simplification and has proved to be a legitimate move in many cases.

In GG the condition of ‘strict locality’ applies to the structure of the sentence,
not necessarily to what is, or is not, ‘close’ on the surface of the sentence. It has been
emphasized that one cannot just count the number of words separating the affected
elements in the sentence. What counts are the number and kind of nodes separating
the affected elements in the syntactic tree. In GG, long before the MP, this central
property of syntax had been called ‘structure dependence’. It constitutes a sharp
departure from many old and new anti-generativist approaches to language based
on statistics or conventions of use.

The generative theory of grammar has allowed a deep analysis of many lan-
guages and dialects. It also turned out that the vast majority of all Phrases had the
same structure, X-bar structure, which is recursive: An element of the structure (a
node of the X-bar tree) can contain another X-bar structure, and so on; recursively,
indefinitely.5

Perhaps, this is a good point where to insert in our presentation a first part of
our algebraic formalization. In fact, we will see that we obtain in a straightforward
way the recursivity, or self-similarity, of the X-bar structures.

2.1. X-Bar Structures, Their Self-Similarity, and the Breakdown of Time Reversal
Symmetry

It has become standard in GG to construct syntactic trees that have only two branches
departing from each node. This is referred to as ‘binary branching’ (Kayne 1984).
In fact, we have a collection of binary entities. Lexical items are represented, by
useful convention, as (+, −), which is written in the matrix formalism by using

the standard vector notation
(

1
0

)
for ‘+’ and

(
0
1

)
for ‘−’. The notation for

(+a,−b) is then a

(
1
0

)
+ b

(
0
1

)
=

(
a
b

)
. Thus, Nouns are (+N,−V ), Verbs

as (+V,−N). This notation can be usefully extended to Phrasal Heads (+H,−C)
and Complements (+C,−H). In the syntactic derivation, we have Terminal nodes
(+T ) and nonterminal nodes (−T ). Copies of lexical items, or of larger structures,
in a sentence can be pronounced (+Pr) or not-pronounced (−Pr). Recursive ap-
plications of Merge may produce a Phase (+Ph) or not (−Ph). The most basic

4 Different languages treat the copies differently. In most languages only the higher copy is
pronounced, but there are languages in which the lower copy is pronounced and also lan-
guages in which all copies are pronounced. In the latter case, this applies to ‘short’ elements
(equivalent to the English ‘who’, ‘which’, and similar), never to whole Noun Phrases.

5 The X is a portmanteau symbol, covering most kinds of Phrases.



Linguistics and Some Aspects of Its Underlying Dynamics 99

syntactic operation, Merge, generates a binary set. This suggests to us to formalize
the binary branching in terms of standard formalism of vector or state spaces and
matrix multiplications. In the following we will also use the shorthand notation

|0〉 =

(
0
1

)
and |1〉 =

(
1
0

)
.

In general, we may consider a collection of N objects (‘particles’ or ‘lexical el-
ements’), which in a standard fashion can be labeled by i = 1, 2, . . . N as |0〉i and
|1〉i .

In Appendix A we introduce so-called Pauli matrices and the matrices σ+ and
σ−. The interest in the matrices σ± is due to the fact that they generate the transi-
tions between the two states |0〉 and |1〉:

σ−|1〉 = |0〉 , σ+|0〉 = |1〉 , σ−|0〉 = 0 , σ+|1〉 = 0(1)

In order to see how ‘binary Merge’ between two states is generated, consider
these two states |0〉 and |1〉. They may represent two lexical elements or two levels
of the same lexical element. In the following we will consider generalization to the
collection of N elements and restore the index i, which now for simplicity we omit.

In physics, |1〉 is said to be the excited state with respect to |0〉 which is called
the ‘vacuum’ or the ground state. The process leading from |0〉 to |1〉 is called the
excitation process and the one leading from |1〉 to |0〉 is called the decay process of
the |1〉 state. We thus start with |0〉. Of course, we want to move on from the state
|0〉. Here and in the following we do not consider the (trivial) possibility to remain
in the initial state |0〉, which is equivalent to ”nothing happens.”6 The interesting
possibility is the one offered by the process leading from |0〉 to |1〉. According to
(1), this process is obtained by applying σ+ to |0〉:

|0〉 → σ+|0〉 = |1〉(2)

Thus, as a first single step the state |1〉 has been singled out. By ‘single step’ we
mean that we have multiplied |1〉 by one single matrix, the σ+, not by a product
of σ’s. In this connection, consider that σ+ σ+ = 0 = σ− σ−. Therefore, the only
possibilities to step forward of a single step is given in (2), and from there, one more
single step is obtained as:

↗ σ−|1〉 = |0〉(3)
|0〉 → σ+|0〉 = |1〉 →

↘ σ+σ−|1〉 = |1〉(4)

Note that application of σ+σ− is considered to produce a single step, since it is
equivalent to the application of the unit matrix I to |1〉. In general, for any integer
n, (σ+σ−)n |1〉 = 1 × |1〉. Note also that (3) describes the decay process of the
excited state |1〉 to |0〉. The equation (4) describes the ‘persistence’ in the excited

6 The physical meaning of this is that we neglect fluctuations in the ground state, which can be
described by σ− σ+|0〉 = 1|0〉, i.e. |0〉 → |0〉 . In the quantum formalism, this is achieved by
considering the so-called ‘normal ordering’ or ‘Wick product’ of the operators. But here we
do not need to insist further on such an issue.
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state, which represents a dynamically non-trivial possibility and thus we have to
consider it. One more step forward leads us to (5)–(7) and so on:

↗ σ−|1〉 = |0〉 → σ+|0〉 = |1〉(5)
|0〉 → σ+|0〉 = |1〉 →

↘ σ+σ−|1〉 = |1〉 ↗σ−|1〉 = |0〉
↘σ+σ−|1〉 =|1〉(6)

1 1 2 3(7)

At each step, new branching points ↗↘ (new nodes of the X-bar tree) are obtained
and the X-bar tree is generated by recursive σ ‘operations’, i.e. by multiplying
|0〉 and |1〉 by the σ matrices, which we also call σ ‘operators’. The set of these
operations constitute what is named, in technical terms, the “SU(2) transformation
group” (Perelomov 1986; see also Appendix A).

The conclusion at this point is that we have the ‘number of the states’ in these
first steps in the sequence: 1 1 2 3, starting with |0〉, [one state] , then in equations
(2) [one state], (3) and (4) [2 states], and (5) and (6) [3 states], respectively, (cf. (7)).

From here, from the two |1〉’s, we will have in the next step two |0〉’s and two
|1〉’s, and from the |0〉 we will get one single |1〉—in total 5 states: 1 1 2 3 5. We
will get thus, in the subsequent steps, other states, and their numbers obtained at
each step are in the Fibonacci progression ({Fn}, F0 ≡ 0) with the ones obtained
in previous steps. In general, suppose that at the step Fp+q, one has p states |0〉
and q states |1〉; in the next step we will have: (p + q) |1〉 and q |0〉, Fq+(p+q). In the
subsequent step: (p+ 2q) |1〉 and (p+ q) |0〉, a total of states 2p+ 3q = (q + p+ q) +
(p + q), i.e. the sum of the states in the previous two steps, which agrees with the
rule of the Fibonacci progression construction.7

It is interesting to remark that (σ+σ−)n|1〉 = 1 × |1〉, for any integer n, can be
thought of as a ‘fluctuating’ process: The σ− brings |1〉 down to |0〉, and σ+ again
up to |1〉, and so on for any integer n: σ+σ− induces fluctuations |1〉 � |0〉 � |1〉
(through the ‘virtual’ state |0〉); this is the meaning of the fact above observed that
σ+σ− is equivalent to 1 at any integer power n when operating on |1〉. This ‘fluc-
tuating activity’ corresponds, in the syntactic derivation, to successive applications
of Merge. Simplifying a bit, when recursive Merge reaches the topmost node of a
Phase, that is, a point of computational closure, everything underneath, in the tree,
becomes off limit. The condition called ‘Phase Impenetrability Condition’ (PIC)
(Chomsky 2000, 2001; Richards 2007; Gallego 2012) specifies that nothing in a lower
Phase is accessible to the syntactic operations that create the immediately higher
Phase. The syntactic objects of the lower Phase and the lower Phase itself are dy-
namically ‘demoted’ to a |0〉 state. The ‘fluctuating activity’ is also much suggestive
when one thinks of the processes (of milliseconds or so) in the selection of lexical
items and the recursive Merge of these into syntactic objects.

7 There are many ways to capture how natural phenomena generate the Fibonacci, or F pro-
gression, both in inorganic and organic systems (especially in botanic structures). The present
approach is, we think, particularly elegant and especially close to how the F progression is
generated in syntactic structures.
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Summarizing, we have described the ‘action’ on the state |0〉 and |1〉 by appli-
cation (multiplication) of the sigma matrices. In the physics jargon, one says that
the ‘dynamics’ of a system is defined once the rule of ‘how to go’ from one step
to the next one in the system evolution is found. Accordingly, in the present case,
we can say that the X-bar tree (or F tree) has been obtained as a result of the SU(2)
dynamics (namely the set of operations induced by products of σ matrices), with
the additional result that its multiplicity of states, its recursivity or self-similarity
properties turn out to be described by the Fibonacci progression.

We also observe that the full set of σ+ and σ− products compatible with the
SU(2) algebra (the products used above and leading, as we have seen, to the F
progression) generates what is called the Jaynes-Cummings-like dynamics, which
has a wide range of physical applications (see e.g. Gerry & Knight 2005; Blasone
et al. 2011). Thus our construction presents features which certainly deserve much
attention, since we now have that the X-bar tree, which plays so a crucial role in the
MP, arises as a result of a dynamical model in linguistic, its recursive property being
related to the self-similarity property of the Fibonacci progression. The paramount
importance of the Fibonacci progression in language has been stressed by Medeiros
(2008), Idsardi & Uriagereka (2009), Piattelli-Palmarini & Uriagereka (2004, 2008),
and in Medeiros & Piattelli-Palmarini (in press). References therein cover a variety
of instantiations of Fibonacci structures in natural systems ranging from binary
stars to ferromagnetic droplets, from botanic forms to brain waves and beyond.

We close this subsection by observing that at any given step of the X-bar tree
(the F tree), the simple knowledge of the state |0〉 or |1〉 is not sufficient in order
to know its parent state in the previous step; we should also know which one is
the branch we are on. This in part corresponds to the PIC mentioned above and
to one of the major problems in all of contemporary linguistic theory. In speaking
and reading we proceed left to right, from the ‘outside’ (the main sentence), to the
‘inside’ (subordinate sentence), but the syntactic derivation proceeds from right to
left, from inside out. This creates a conflict, namely that presumably the construc-
tion of Phases—that is, of periodic points of closure—solves (Piattelli-Palmarini &
Uriagereka 2004, 2005, 2008).

While the tree construction (the ‘way forwards’) is fully determined by the σ’s
operations, the ‘way backwards’, as said, is not uniquely determined solely by the
knowledge of the state |0〉 or |1〉. On the other hand, suppose one goes backwards
of, say, q steps starting from a given, say, |1〉 (or |0〉). Then returning to such a
specific state is no more guaranteed since at each branching point one has to chose
which way to go (unless one keeps memory of its previous path, the Ariadne’s
thread. . . ). In the syntactic derivation, ‘forward’ consists in building further struc-
ture from the inside out, from right to left, proceeding upwards in the syntactic
tree. The opposite, ‘backwards’, consists in the derivation ‘looking down’ to lower
levels. The PIC, as we have just seen, constrains this operation to a strict minimum.
Omitting details, only the leftmost (and topmost) ‘edge’ of the lower Phase is (quite
briefly) still accessible to the operations building the next higher Phase.

The lesson is that, parameterizing by time the moving over the X-bar tree, time-
reversal symmetry is broken. In other words, as seen above, the ‘way forwards’ and
the ‘way backwards’ cannot be trivially exchanged, which means that on the axis
of the coordinate representing the time (the time axis), the origin—say the time t0—
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is not a symmetric point under exchange of the forward and backward direction,
indeed, which in turn forbids that one can choose it or move it on the time axis
arbitrarily. In such a case, according to the Noether theorem, the system energy
is not conserved. The system may exchange, release or receive, energy with its
environment. It is an open or dissipative system. We therefore need to deal with
the formalism specially devised for dissipative systems. We will consider such a
problem in the following. Before that we need to comment briefly in the following
section on the ‘interfaces’, namely the conceptual intentional (semantic) system (CI)
and the sensory-motor system (SM), to which Narrow Syntax has to make contact.

3. The Interfaces

Narrow Syntax has to make contact (has to interface) with two distinct systems:
the conceptual intentional (semantic) system (CI) and the sensory-motor (articula-
tion, auditory, or visual perception) system (SM). Language, for centuries, has been
correctly conceived as sounds with meanings.8 But it is better now conceptualized
as meanings with sounds, because Narrow Syntax is optimized to interface with
the CI system, not so much with the SM system. CI ‘sees’ all copies, and interprets
them, but at the SM interface only one copy is pronounced (usually the higher copy;
see footnote 4), while the other copy (or copies) remain(s) silent (deleted at SM):

(8) Which books did you read [books]?

The rightmost (hierarchically lower) copy in English and in many other lan-
guages is not pronounced. We see that ’copies’ now become important objects in
the linguistic structure. We will show how this can be accounted for in our model-
ing. Until 2012, the ’optimality’ of Narrow Syntax with regard to the CI system was
supposed to operate as follows: There are features that are ’meaningful’, called
interpretable features, which CI can understand, and other features that are un-
interpretable, meaningless. From 2012 on, the bold hypothesis is that Merge does
not form sets that have a category, not any more. It works freely and without con-
straints (a bit like Feynman’s sum of all histories, before amplitudes give the wave
function). It is ‘only’ at the interface with CI that categories are needed (CI needs la-
beled heads: which one is a verb, which one a noun, an adjective etc.).9 A minimal
search process called the Labeling Algorithm is what does this job (Chomsky 2013,
in press). In this framework, categorization and non-commutativity are only nec-
essary at the CI interface. Order is important, obviously, at the SM interface (what
to pronounce first, second etc., and what not to pronounce at all—deleted copies),
but there is strong evidence that order does not appear at the CI interface. Order

8 Sound is the traditional expression, but we now know that it is unduly too restrictive: This
should extend to gestures in sign languages (see the classic analysis of American Sign Lan-
guage by Klima & Bellugi 1979 and many studies ever since) to touch in deaf-and-blind sub-
jects (C. Chomsky 1969, 1986)

9 It needs more than this: If XP is a VP at CI (the highest node, a Complementizer Phrase), then
the mapping from Narrow Syntax to the SM system (externalization) must also know that it
is a VP . Therefore labeling must be done at Transfer, so that the information goes to both
interfaces.
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is probably a reflex of the SM system, not feeding Narrow Syntax or CI.10 And
categorization has to be the same at CI for interpretation at SM and for externaliza-
tion. Today, some syntacticians try to shoehorn the previous analysis into this more
stringent picture. Not everyone is persuaded that it can be done completely. But
interesting explanations with elegant simplifications have been obtained already
(see, among many, Berwick et al. 2013b; Cecchetto & Donati 2010; van Gelderen
2014; Hornstein 1999; Hornstein et al. 2005). In essence: Explain and unify in terms
of unconstrained Merge and the Labeling Algorithm many (ideally, all the) special
properties of syntax. In many linguistic expressions, nothing is invoked beyond
the simplest computational operation Merge and reasonable interpretations of gen-
eral principles of strict locality and Minimal Computation (MC). It’s third factors
(physics) all the way.

3.1. The Manifold of Concepts

We are now ready to resume the discussion of the algebraic formalism. Our first
task is to consider the whole set of N elements introduced in the subsection 2.1 and
thus restore the subscript i labeling each element in the set of N elements.

One may regard the collection of the associated states as the one at a given step
of high multiplicity in the Fibonacci tree. Since N can be as large as one wants, we
may always have a state which is the direct product of a large number (in principle,
an infinite number, hence one needs field theories) of factor states, Πi=1,N |si〉 ≡
|s1〉 ⊗ |s2〉 ⊗ . . . |si〉 ⊗ . . . ≡ |s1, s2, . . . si . . .〉, with si = 0 or 1 for each i = 1, 2, . . . , N .
The most general state. denote it by |l〉, is then a superposition of all states with l
elements in |1〉 and N − l elements in |0〉. Its explicit form is given in Appendix B.
The difference between the number of elements in |1〉 and the one of the elements
in |0〉 is measured by σ3 and is given by 〈l|σ3|l〉 = l− 1

2N . This quantity is called the
order parameter. Its being non-zero signals that the SU(2) symmetry is broken.11

In Appendix B (see also Beige et al. 2005; De Concini & Vitiello 1976), it is
shown that in the large N limit the su(2) algebra of the σ matrices, represented in
the space of the |l〉 states, for any l, and written in terms of S± and S3 ≡ σ3, where
S± = σ±/

√
N , transforms (rearranges) into the algebra in (9) .

[S3, S
±] = ±S± , [S−, S+] = 1(9)

The result (9) is a central result. Its physical meaning is that, as a consequence of the
spontaneous breakdown of symmetry, long range correlation modes (the Nambu-
Goldstone modes) are dynamically generated (the Goldstone theorem; Goldstone et
al. 1962). These Nambu-Goldstone modes represent collective waves spanning the
whole system and are here represented by the ladder S± operators. They are the
carrier of the ordering information through the system volume (Shah et al. 1974; De
Concini & Vitiello 1976; Umezawa 1993; Blasone et al. 2011).

10 There are two notions of order to be taken into account: ordering of the syntactic operations
and ordering of the items in the externalized linguistic expression. Here we have dealt with
the latter, while a treatment of the first comes in what follows.

11 The phenomenon of spontaneous symmetry breakdown is throughly studied in many-body
physics. For example, in the case of the electrical or magnetic dipoles, the order parameter
provides the measure of the polarization or magnetization, respectively.
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Order thus appears as a collective dynamical property of the system. The order
parameter provides indeed a measure of the system ordering. Different degrees of
ordering correspond to different values, in a continuous range of variability, of the
order parameter, thus denoting different, i.e. physically inequivalent phases of the
system.

When spontaneous symmetry occurs, the system may be found therefore in
different dynamical regimes or physical phases. These are described by different
spaces of the states of the system each one labeled by a specific value assumed by
the order parameter. Such a process of dynamical generation of physically differ-
ent phases, each one characterized by collective, coherent waves, represented by
the ladder operators S±, is called foliation in the jargon of quantum field theory
(Celeghini et al. 1992; Vitiello 1995; see also subsection 3.2 and Appendix C).

In GG, the phenomenon of symmetry breaking—the anti-symmetry of syn-
tax and the dynamic anti-symmetry of syntax—have been cogently argued for by
Kayne (1994) and Moro (2000), respectively, for example. This is in part why issues
about the status of X-bar (as part of Narrow Syntax or as an emergent configuration
of recursive binary Merge) have been recently debated (Chomsky 2013, in press; see
also Medeiros & Piattelli-Palmarini, in press). In essence, if Merge is unconstrained
and does not, in itself, produce ordered sets, we have an initial symmetry (i.e. be-
fore the interfaces with CI and SM). Labeling and ordering at the interfaces break
this symmetry and create order. This process does not involve any material transfer,
something that is obviously excluded in the case of language.12

We thus realize that, due to the spontaneous symmetry breakdown, our system
has undergone a formidable dynamical transition, moving from the regime of be-
ing a collection of elementary components (lexical elements) to the regime of collec-
tive, coherent S± fields. Our main assumption at this point is to identify a specific
conceptual, meaningful linguistic content (a Logical Form, LF)13 with the collective
coherent phase associated to a specific value of the order parameter. The seman-
tic level, characterized by a continuum of concepts or meanings (the ‘manifold of
concepts’), thus emerges as a dynamical process out of the syntactic background of
lexical elements, in a way much similar (mathematically isomorph) to the one by
which macroscopic system properties emerge as a coherent physical phase out of
a collection of elementary components at a microscopic (atomistic) level in many-
body physics (Umezawa 1993; Blasone et al. 2011).

In conclusion, we can now give a quantitative characterization of the ‘interfaces’
where the Narrow Syntax has to make contact with the CI system: When interfaces
are met we have the spontaneous breakdown of symmetry in the largeN limit. It is
there that a specific meaning or ‘concept’ arises from a ‘continuous’ context of pos-
sible concepts by selecting out one representation of the algebra from many of them

12 A comparison due to the Oxford particle physicist Frank Close is the following (Close 2011):
Imagine several guests sitting at a very large circular dinner table. Each has a napkin on his
or her right and one on the left. They are uncertain about which one to pick up. Until a more
daring guest decides to pick up the one on (say) the right. Everyone else follows and we have
a ‘wave’ of napkin pickups. The underlying symmetry is broken. No movement of matter,
no forces applied. In analogous situations in physics, a Nambu-Goldstone boson (a mass-less
particle) is thus generated.

13 The notion of LF as the last syntactic input to full meaning is well consolidated in GG and has
been since the pioneering work of Higginbotham & May (1981) and May (1985).
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‘unitarily inequivalent’ among themselves (each corresponding to a different con-
cept) (Vitiello 1995). The concept appears at that point as a collective mode, not a
result of associative process pulling together bits and little lexical pieces, words etc.
The collectiveness comes from the ‘phase coherence’, whose carriers are the collec-
tive Nambu-Goldstone S± fields. We also understand why “only at the interfaces
the issues of ordering become relevant” (cf. previous subsection). Order indeed is
lack of symmetry and it can only appear when this is spontaneously broken.

For the same reason, categorization and non-commutativity (and order) are
only necessary at the CI interface. Indeed, only at the large N limit CI needs la-
beled heads: which one is a verb, which one a noun, an adjective etc. We have seen
that the formal construction of the binary Merge does not require labeled struc-
tures (Noun, Verb, Adjective, Preposition etc.). The necessity of labeling (through
the Labeling Algorithm) only arises at the interface with meaning. Interpreting the
different constituents (Phrases) is a necessity for the CI system, with the formal
label of a syntactic object triggering different intentional landscapes. Once the Nar-
row Syntax has made contact with the CI system, through the action-perception
cycle (Vitiello 1995) of the cortex dynamics, the SM system gets also involved and
therefore the linguistic structures can be externalized, allowing to communicate to
other speakers all the required subtleties of meaning.

The formalism here presented thus endorses Chomsky’s thesis that Merge is
unconstrained, and that issues of labeling (headedness, categorization of lexical
items) and ordering only arise at the interfaces of Narrow Syntax with the CI and
the SM systems.

3.2. Copies of Lexical Elements

We now consider the feature of the copies of lexical elements in the MP. At the end
of subsection 2.1, we have observed that time-reversal symmetry is broken moving
along the X-bar tree. We saw that when the breakdown of time-reversal symmetry
occurs, one cannot treat the system as a closed system. It is a dissipative system and
from the standpoint of the algebraic formalism, this means that one has to set up a
proper mathematical scheme, which is achieved by doubling the system degrees of
freedom (Celeghini et al. 1992). This goes as follows.

Consider a dissipative system, say A. It is an open system interacting with the
environment in which it is embedded, denote it with Ã. In order to carry on the
analysis of the system properties one cannot avoid to consider the fluxes of energy,
matter, information, etc. exchanged between the system A and its environment
Ã. This implies that the study of the dissipative system cannot ignore the study
also of the properties and features of the environment. Thus one needs to consider
both, the system and its environment. This means that, instead of considering the
system A separated from the environment, one is brought to consider algebraic
forms including both of them, {A, Ã}, namely A → {A, Ã}. However, one must
pay attention in treating the system elements and the environment element, since in
general, the system elements cannot be exchanged or confused with the elements
of the bath or environment in which the system is embedded. They need to be
considered on a different footing. This is obtained by introducing a ‘weight factor’,
or ‘deformation parameter’, say θ, with different values for A and Ã (Celeghini et
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al. 1998; Blasone et al. 2011). Such a procedure may be formulated in a precise
manner and goes under the name of ‘deformed Hopf algebra structure’, which is a
noncommutative algebra. See Appendix C for introductory details. The conclusion
is that one has now to deal with a ‘doubled’ system: A and its double or ‘copy’ Ã.
As a matter of fact, since the fluxes between A and Ã must be balanced, one may
think indeed of Ã as a ‘copy’ of A, in the sense that Ã represents the sink where,
say, the energy from the source A goes, and vice versa, A also represents the sink
where the energy from the source Ã goes. The ‘tilde’ operators Ã thus denote the
doubled operators in the doubling of the algebra A → A × A (see also Appendix
C).

Note that, when considering the elements of A (and Ã), one should use sub-
scripts, say k, denoting characterizing properties of the A (and Ã) modes, e.g. Ak.
For simplicity we omit such subscripts as far as no misunderstanding occurs.

Simplifying a bit, the doubling of the space and of the operators creates a strict
correspondence between each operator and its ‘double’ (the tilde operator). This
two-way interaction is quite specific. In the case of language, each copy interacts
with the initial (in a sense, the ‘original’) element and meaning is accordingly ex-
tracted at CI. As CI well ‘understands’, the interpretation is determined by this dual
correspondence.

Denote now by |0〉 ≡ |0〉× |0〉 the state annihilated by A and Ã: A|0〉 = 0 = Ã|0〉
(the vacuum state). By proper algebraic operations (see Blasone et al. (2011) and
Celeghini et al. (1998) for the technical details) one may show that starting from the
operators A and Ã, the operators A(θ) and Ã(θ) may be obtained, such that they do
not annihilate |0〉. Let us denote the state annihilated by these operators by |0(θ)〉N .
Its explicit form is given in Appendix C.

The vacuum state |0(θ)〉N is a well normalized state: N 〈0(θ)|0(θ)〉N = 1. The
meaning of the subscript N is clarified below (see the comments after equation
(10)). We remark that the vacuum state |0(θ)〉N turns out to be a generalized SU(1, 1)
coherent state of condensed couples of A and Ã modes (Perolomov 1986; Celeghini
et al. 1992), which are entangled modes in the infinite volume limit. The vacuum
|0(θ)〉N is therefore a state densely filled with couples of A and Ã: It is a coherent
condensate of the couples AÃ.14

For notational simplicity from now on we will denote byA andA† the operators
S− and S+ in (9), respectively. Thus, the doubling process implies that correspond-
ingly we also have S̃− and S̃+, which will be denoted as Ã and Ã†, respectively.

One can show that N 〈0|0(θ)〉N → 0 and N 〈0(θ′)|0(θ)〉N → 0, ∀θ 6= θ′, in the
infinite volume limit V → ∞ (Celeghini et al. 1992, 1998). Thus we conclude that
the state space splits in infinitely many physically inequivalent representations in
such a limit, each representation labeled by a θ-set {θk, ∀k}. This is the θ-foliation

14 In language, in first approximation, the vacuum state is silence. Just like in the present alge-
braic formalism, there are many kinds of silence. Not only how a silence gap is interpreted
in the unfolding of a conversation, but in a more specific and more technical sense. There is,
literally, a syntax of silence (Merchant 2001) in linguistic constructions called ellipsis (Mary
bought a book and Bill did −−−− too) and sluicing (Ann danced with someone but I do not know who
−−−−). Jason Merchant and other syntacticians and semanticists have persuasively shown
that what can be omitted is never just an arbitrary ‘bunch of words’, but an entire syntactic
constituent (an entire Verb Phrase, most frequently). The syntax and semantics of several well
defined but unpronounced elements has been part of the theory since the beginning of GG
(Chomsky 1955/1985).
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process of the state space (already mentioned in subsection 3.1). In the present
case of linguistics this represents the process of generation of the manifold of con-
cepts. It is a dynamical process since the generator Gk (see Appendix C for its
definition) is essential part of the system Hamiltonian (Celeghini et al. 1992) . Thus
in linguistics the ‘manifold of concepts’ is made of ‘distinct’, different spaces (the
‘physically inequivalent’ representations), each one representing a different ‘con-
cept’ (in language we have the LFs composing the global LF of the entire sentence),
here described as the coherent collective mode generated through the X-bar tree as
illustrated in subsection 2.1.

These spaces (concepts) are protected against reciprocal interferences since the
spaces are ‘unitarily inequivalent’, i.e. there is no unitary operator able to transform
one space in another space (Vitiello 1995, 2001), which corresponds to the fact that
syntactic Phases cannot be commingled, nor ’reduced’ one into the other. Phases
are, as we said above, mutually impenetrable. In practice, however, the unitary
inequivalence is smooted out by realistic limitations, such as, for example, the im-
possibility to reach in a strict mathematical sense the V →∞ limit (i.e. the ‘infinite
number’ of lexical elements or the theoretically infinite number of choices for the
co-referentiality indices in the logical form of even the simplest sentences).15 Thus,
realistically, we may also move from concept to concept in a chain or trajectory
going through the manifold of concepts (Vitiello 1995, 2004a, 2004b; Freeman &
Vitiello 2006, 2008; Capolupo et al. 2013). These trajectories may be thought as pro-
ducing ‘association of concepts’ in their evolving through the manifold of concepts.
Remarkably, one may have a multiplicity of such ‘associations’, each one produced
by a specific trajectory, among the many possible ones. One may thus follow differ-
ent, distinct, non-interfering paths in the space of the concepts. Such features are
indeed implied by the fact that the trajectories, although deterministically evolv-
ing, are found to be chaotic trajectories (Vitiello 2004b). This corresponds to the
compositionality of meanings, when the syntactic derivation proceeds ’upwards’
(that is, forward) from the lower Phases to the higher Phases, from local LFs to the
composition of more inclusive LFs.

In order to better understand the role played by the ‘tilde copies’, Ã, it is inter-
esting to compute NAk

= A†kAk in the state |0(θ)〉N :

NAk
(θ) ≡ N 〈0(θ)|A†kAk|0(θ)〉N = N 〈0(θ)|Ãk(θ)Ã†k(θ)|0(θ)〉N = sinh2 θk(10)

From this we see that for any k the only non-vanishing contribution to the number
of non-tilde modesNAk

(θ) comes from the tilde operators, which can be expressed
by saying that these last ones constitute the dynamic address for the non-tilde modes
(the reverse is also true, the only non-zero contribution to NÃk

(θ) comes from the
non-tilde operators). In the case of language, this ‘address’ corresponds to the link
between the two copies, or among a chain of cyclic copies in more complex sen-
tences.

In conclusion, the physical content of |0(θ)〉N is specified by the N -set ≡ {NAk

(θ),NAk
(θ) = NÃk

(θ), ∀k}, which is called the order parameter. It is a characterizing

15 One of the leaders in the semantics of natural languages wrote (Heim 1983: 232): “We just
focused on a particular logical form that grammar provides for the sentence ‘She hit it’ [. . . ]
But there are infinitely many others, since the choice of indices is supposed to be free. So
[the simple logical form there reported] represents really only one of many readings that the
sentence may be uttered with.”
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parameter for the vacuum |0(θ)〉N and explains the meaning of the N subscript
introduced above.

All of this, therefore, sheds some light on the relevance of ‘copies’ in the MP.
In some sense they are crucial in determining (indeed providing the address of)
the whole conceptual content of the considered linguistic structure. They provide
the dynamic reference for the non-tilde modes. Unpronounced copies, being silent,
do not reach the SM system, but they are crucially interpreted by the CI system.
They are necessary to the understanding of the meaning of what is actually pro-
nounced. Remarkably, they are ‘built in’ in the scheme here proposed; they are not
imposed by hand by use of some constraint ‘external’ to the linguistic system. It
is in this specific sense that we speak of ‘self-consistency’: Our formal scheme is
computationally (logically) self-contained. Perhaps the real power of the linguistic
tool available to humans consists in such a specific feature.

4. Concluding Remarks

The essence of the contribution we propose in this paper for the understanding
and the physical modeling of the Minimalist Program consists in having pointed
out the dynamical nature of the transition from a numeration of lexical items to syn-
tax and from syntax to the logical form (LF) of the sentence and from LF to mean-
ing. This has brought us to the identification of the manifold of concepts, to the
self-similar properties of the X-bar trees and of their dissipative character (break-
down of the time-reversal symmetry), to the role of the copies in the conceptual
intentional system CI. The Hopf algebra structure has shown that the doubled tilde
operators, which we have seen to play the role of the copies in the CI system, are
‘built in’ in the computationally self-contained algebraic scheme. These copies or
tilde modes have been recognized to provide the dynamical reference (the ‘address’)
of the non-tilde modes. The result is the logical self-consistency (inclusion of the
reference terms) of languages.

We have also pointed out the mechanism of the foliation of the space of the
states, out of which the great richness of the conceptual content, the ‘multiplicity’
of inequivalent meanings (nested LFs) emerges (see the comments following (10)
and the remark by Heim in footnote 15). In this connection, we would like to call
the attention of the reader on a further aspect of the scheme we propose in order to
model some features of the MP, namely on its intrinsic thermodynamic nature. It
is indeed well known (Umezawa 1993) that within the scheme one can consistently
define thermodynamic quantities (operators) such as the entropy and the free en-
ergy. Let us consider here the entropy.

Thinking of the entropy as an ‘index’ or a measure of the degree of ordering
present in the state of the system (lower entropy corresponding to higher degree
of order), one can show that the state |0(θ)〉N can be constructed by the use of the
entropy operator S (Celeghini et al. 1992; Umezawa 1993; Blasone et al. 2011). Its
expectation value in |0(θ)〉N is given by the familiar form, where Wn ≡ Wn(θ) is
some quantity, which here we do not need to specify:

N 〈0(θ)|S|0(θ)〉N =

+∞∑
n=0

WnlogWn(11)
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Remarkably and consistently with the breakdown of time-reversal symmetry
in dissipative systems (the appearance of the arrow of time), time evolution can
be shown to be controlled by the entropy variations (De Filippo & Vitiello 1977;
Celeghini et al. 1992). These indeed control the variations in the A − Ã content
of |0(θ)〉N , thus controlling the time evolution (the trajectories) in the manifold of
concepts (the space of the infinitely many LF, see Heim 1983 in footnote 15). Entropy
is thus related with the semantic level of the LF, meanings, which are dynamically
arising as collective modes out of the syntactic (atomistic) level of the basic lexical
elements.

In conclusion, we have uncovered the isomorphism between the physics of
many-body systems and the linguistic strategy of the Minimalist Program. Al-
though we have exploited the algebraic properties of the many-body formalism,
in our scheme the linguistic structures are ‘classical’ ones. It is known, on the other
hand, that the many-body formalism is well suited to describe not only the world
of elementary particle physics and condensed matter physics, but also macroscop-
ically behaving systems characterized by ordered patterns (Umezawa 1993; Bla-
sone et al. 2011). Our discussion seems to imply that the crucial mechanism of
the foliation of the space of the states has to do with the basic dynamics underly-
ing the linguistic phenomena observed at a macroscopic level. It is an interesting
question whether the basic dynamics underlying the richness of the biochemical
phenomenology of the brain behavior (Vitiello 1995, 2001; Freeman & Vitiello 2006,
2008; Capolupo et al. 2013; Freeman et al. 2015) also provides the basic mechanisms
of linguistics.

Appendix A: On Pauli Matrices and Their Algebra

Consider the 2× 2 matrices σ1, σ2, σ3 and the unit matrix I :

σ1 =
1

2

(
0 1
1 0

)
, σ2 =

1

2

(
0 −i
i 0

)
, σ3 =

1

2

(
1 0
0 −1

)
, I =

(
1 0
0 1

)
.

The σ1, σ2, σ3 are the Pauli matrices. They were introduced as an elegant device in
the treatment of magnetic spin. The formalism, however, is directly applicable to
any system that has two possible states (Perelomov 1986). The space of states on

which the matrices operate is built indeed on the basis vectors
(

0
1

)
and

(
1
0

)
,

which we will denote by |0〉 and |1〉, respectively. The scalar product is denoted by
〈i|j〉 = δij , i, j = 0, 1. The Pauli matrices satisfy the su(2) algebra, which, in terms

of the matrices σ± = σ1 ± i σ2, σ+ =

(
0 1
0 0

)
and σ− =

(
0 0
1 0

)
, is given by

the commutation relations

[σ3, σ
±] = ±σ± , [σ−, σ+] = −2σ3 .

When we have a collection of N objects (‘particles’ or ‘lexical elements’), which
are represented for each i by the ‘ground states’ |0〉i and ‘excited states’ |1〉i, i =

1, 2, 3, . . . N , we have σ± =
∑N

i=1 σ
±
i and σ3 =

∑N
i=1 σ3i.

We also write σ3i = 1
2(|1〉ii〈1| − |0〉ii〈0|), with eigenvalues ±1

2 , σ+i = |1〉ii〈0| and
σ−i = |0〉ii〈1|.
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Appendix B: Dynamical Rearrangement of the SU(2) Symmetry

Consider the state |l〉 introduced at the beginning of subsection 3.1, namely the state
which is a superposition of all states with l elements in |1〉 and N − l elements in
|0〉. Its explicit form is given by:

|l〉 ≡ [ |0102 . . . 0N−l 1N−l+11N−l+2 . . . 1N 〉+ . . .

+|1112 . . . 1l 0l+10l+2 . . . 0N 〉 ]/
√(

N
l

)
For any l we have (Beige et al. 2005; Blasone et al. 2011):

σ+|l〉 =
√
l + 1

√
N − l |l + 1〉 ,

σ−|l〉 =
√
N − (l − 1)

√
l |l − 1〉

This shows that σ± and σ3 acting on |l〉may be represented as (the so-called Holstein-
Primakoff non-linear realization; Holstein & Primakoff 1940; Shah et al. 1974; De
Concini & Vitiello 1976; Blasone et al. 2011)

σ+ =
√
NS+AS , σ

− =
√
NASS

− , σ3 = S+S− − 1
2N,

with AS =
√

1− S+S−/N , S+|l〉 =
√
l + 1 |l + 1〉 and S−|l〉 =

√
l |l − 1〉, for any

l. The σ’s still satisfy the su(2) algebra (cf. Appendix A). However, in the large N
limit, we have:

σ± |l〉 =
√
N S± |l〉

and thus S± = σ±/
√
N for large N : The phenomenon of the contraction of the

algebra occurs (Inönü & Wigner 1953; De Concini & Vitiello 1976; Beige et al. 2005).
This means that in the large N limit the su(2) algebra written in the space of the |l〉
states, for any l, in terms of S± and S3 ≡ σ3, contracts to the so-called (projective)
e(2) algebra:

[S3, S
±] = ±S± , [S−, S+] = 1 ,

which is the equation (9) in the subsection 3.1. This is a centra result. It expresses the
‘rearrangement’ of the su(2) algebra in the e(2) algebra, which is isomorph to the
Heisenberg-Weyl algebra (Perelomov 1986), with S3 playing the role of the num-
ber operator and S± the role of ladder operators. The rearrangement of symmetry
is a well known dynamical process (De Concini & Vitiello 1976; Umezawa 1993),
which occurs when there is spontaneous breakdown of symmetry characterized by
a non-vanishing classical field called order parameter. In the present case, the order
parameter is given by 〈l|σ3|l〉 = l − 1

2N 6= 0.

Appendix C: Doubling of the Degrees of Freedom for Dissipative Systems

Let us denote by A the operator algebra of a given system. The algebra mapping
A → A × A defines the doubling of the degrees of freedom of the system. It is a
natural requirement to be satisfied when one has to consider, for example, the total
energy of a system of two identical particles, Etot = E1 + E2, or their total angular
momentum Ltot = L1+L2. These sums are defined in the algebraA×A and denote
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the Hopf coproducts Etot = E × 1 + 1 × E and Ltot = L × 1 + 1 × L, respectively,
which are commutative under the exchange of the two considered particles.

As said in the subsection 3.2, most interesting is the case of two elements which
cannot be treated on the same footing, as it happens when dealing, for example,
with open or dissipative systems (e.g. finite temperature systems), where the sys-
tem elements cannot be exchanged with the elements of the bath or environment
in which the system is embedded, or as in the case of linguistics where, at the syn-
tactic and semantic levels, lexical elements, as well as conceptual contents, cannot
be simply interchanged. In these cases, we need to consider q-deformed Hopf alge-
bras with noncommutative Hopf coproducts ∆Aq = A× q + q−1 ×A ≡ Aq + q−1 Ã
(Celeghini et al. 1998), with the operator (matrix) A ∈ A and q a number chosen on
the basis of some mathematical constraint on which we do not need to comment
here. The doubled operators in the doubling of the algebra A → A×A is denoted
by the ‘tilde’ operators Ã.

For simplicity we are omitting subscripts k denoting properties of the A (and
Ã) modes, e.g. Ak, as far as no misunderstanding occurs.

In conclusion, we have the ‘copies’ Ã of the operators A, the Hopf doubling of
the algebra A→ {A, Ã} and of the state space F → F × F̃ . The operators A and Ã
act on F and F̃ , respectively, and commute among themselves.

By using the so-called deformation paramenter q(θ), with q(θ) = e± θ, one ob-
tains (Celeghini et al. 1998; Blasone et al. 2011) the operators A(θ), Ã(θ) and the
so-called Bogoliubov transformations:

A(θ) = A cosh θ − Ã† sinh θ,

Ã(θ) = Ã cosh θ −A† sinh θ.

The canonical commutation relations (CCR) are

[A(θ), A(θ)†] = 1, [Ã(θ), Ã(θ)†] = 1.

All other commutators equal to zero. The Bogoliubov transformations provide an
explicit realization of the doubling or ‘copy’ process discussed above.

The state annihilated by A and Ã is denoted by |0〉 ≡ |0〉 × |0〉 : A|0〉 = 0 = Ã|0〉
(the vacuum state). A(θ) and Ã(θ) do not annihilate |0〉. They annihilate the state
|0(θ)〉N (Celeghini et al. 1992; Umezawa 1993; Blasone et al. 2011) given by

|0(θ)〉N = ei
∑

k θκGk |0〉 =
∏
k

1

cosh θκ
e(tanh θκA

†
κÃ
†
κ) |0〉,

where θ denotes the set {θκ, ∀k}. As usual, the symbol † in A† denotes the hermi-
tian conjugate matrix, namely the transpose and complex conjugate of the matrix
representation of A. In the operator e(i

∑
k θκGk), Gk ≡ −i (A†kÃ

†
k − AkÃk). Gk is

called the generator of the Bogoliubov transformations and of the state |0(θ)〉N .
We have N 〈0|0(θ)〉N → 0 and N 〈0(θ′)|0(θ)〉N → 0, ∀θ 6= θ′, in the infinite volume

limit V → ∞. As already observed in subsection 3.2, this shows that the state
space splits in infinitely many physically inequivalent representations in such a
limit, each representation labeled by a θ-set {θk = ln qk, ∀k}. This is the q(θ)-
foliation dynamical process of the state space.
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Appendix D: Some Useful Formulas on Fibonacci Matrix

The matrix

F ≡ 1

2
I + σ3 + 2σ1 =

1

2

(
1 0
0 1

)
+

1

2

(
1 0
0 −1

)
+

(
0 1
1 0

)
=

(
1 1
1 0

)
is called the Fibonacci matrix. For the n-powers Fn of the F matrix, with n 6= 0, we
have

Fn =

(
Fn+1 Fn
Fn Fn−1

)
= Fn−1 I + Fn F, n 6= 0

where the matrix elements Fn+1, Fn, Fn, Fn−1, with F0 ≡ 0, for any n 6= 0, are the
numbers in the Fibonacci progression F0 = 0, F1 = 1, F2 = 1, F3 = 2, F4 = 3, F5 =
5, F6 = 8, F7 = 13, . . . Moreover, also the coefficients of the matrices I and F in the
last member on the r.h.s. of the above relation are the Fibonacci numbers Fn−1 and
Fn. We can indeed verify that

F 1 =

(
1 1
1 0

)
= F,

F 2 =

(
2 1
1 1

)
= I + F,

F 3 =

(
3 2
2 1

)
= I + 2F,

F 4 =

(
5 3
3 2

)
= 2 I + 3F,

F 5 =

(
8 5
5 3

)
= 3 I + 5F,

F 6 =

(
13 8
8 5

)
= 5 I + 8F,

. . . etc. . . . ,
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